

Genetic Genealogy

Clustering Tools

- Analysis Tools for Autosomal DNA
- Clustering Tools were created to produce Visualization of Matches with shared DNA
- Makes it easier to see Genetic Networks, Shared Segments,
 Ancestral Groups, identify Data Patterns

Clustering Tools

- A Clustering tool analyzes your In Common With (ICW) company matches
- Clustering tools can automate grouping your matches
 - Visualize matches sharing a set of common ancestors
 - Shared matches create Genetic Networks
 - Each cluster potentially shares a common ancestor
- Listed down & across to show who matches whom
- Clusters are presented as colored groupings on graph with data tables that provide more detail
- Diagonal line is where each match matches themselves

BC Era (Before Clustering)

- Cluster analysis is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).
- People developed their own means
- Spreadsheets were the norm

Primary Component Analysis

name	cM	groupName	icw	group	largestCm
Cluster 1					
Alan Scott	31.2	3rd - 5th cousin	1	1	10.4
Alex Jacobs	39.7	3rd - 5th cousin	4	1	20.2
Diane Richardson	30.9	3rd cousin - distant cousin	7	1	24.4
Gerene Vickery	26.7	3rd - 5th cousin	6	1	26.7
Hillary Potts	32.7	3rd - 5th cousin	6	1	26.3
Micki Two	30.3	3rd - 5th cousin	3	1	23.3
Scott Schaeffer	35.6	3rd - 5th cousin	5	1	23.2
Cluster 2					
Alexandra Marier	29.4	3rd - 5th cousin	5	2	29.4
Brandon O'Malley	27.2	3rd cousin - distant cousin	3	2	14.1
Dave Beauregard	27.6	3rd cousin - distant cousin	2	2	19.5
katherine allen	29.9	3rd - 5th cousin	3	2	13.8
Melanie Peabody	32.3	3rd - 5th cousin	2	2	17
Ron Ransom	27.2	3rd cousin - distant cousin	3	2	21.1
Cluster 3					
Bert Jensen	26	3rd cousin - distant cousin	5	3	14.7
Bert Ted Jensen	26	3rd cousin - distant cousin	6	3	14.7
Emma Daigle	32.6	3rd - 5th cousin	4	3	19.5
Lacey Carpenter	29.2	3rd cousin - distant cousin	2	3	9.9
Sue Gibbs	28.4	3rd - 5th cousin	3	3	14.5
Terry Walton	29.5	3rd - 5th cousin	5	3	14.4
Cluster 4					
Carolyn Rogers	29.3	3rd cousin - distant cousin	2	4	19.5
Curtis Hathcock	28.1	3rd - 5th cousin	2	4	10.9
David Heaver	27.4	3rd - 5th cousin	5	4	14.1
Delilah Clark	29.6	3rd cousin - distant cousin	2	4	9.4
Patrick Hannes-Karg	29.2	3rd cousin - distant cousin	4	4	9.1

Spreadsheets

Available Clustering Tools

Manual

Leeds Method

Automated

- Genetic Affairs
- DNAgedcom (Collins' Leeds Method 3D)
- MyHeritage
- GEDmatch Genesis Tier 1
- Shared Clustering

Network Graphs

- RootsFinder
- Connected DNA

Clustering Tools

Leeds Method (Dana Leeds)

 Began as a color coding method of grouping close Matches at AncestryDNA into four columns, one for each grandparent. It has been expanded.

MyHeritage

 An automatic tool that organizes your DNA Matches into clusters that likely descended from common ancestors.

Genetic Affairs (Evert-Jon Blom)

 automates the retrieval of new genetic Matches from 23andMe, FTDNA and AncestryDNA to a periodic email; and the AutoCluster tool will cluster close/large Matches

Clustering Tools

DNAGedcom (Rob Warthen)

- Log onto your DNA company, and download Match and ICW files
- Use Collins" Leeds Method 3D to run cluster report

GEDmatch (Curtis Rogers & John Olson)

New to Genesis Tier 1

Shared Clustering (Jonathan Brecher)

- Installs program on your computer
- Currently need to download Match and ICW files at DNAGedcom Client

Dana Leeds Method

- Began as a color coding method of grouping close Matches at AncestryDNA into four columns, one for each grandparent. It has been expanded.
- Simple Color-Clustering
- 2nd to 4th cousin matches
- Color Tag by shared matches
- Color Groups represent a Grandparent
- Perfect for adoptees
- Free

Leeds Method Steps

- 1. Open DNA Match List
- 2. Extract 2C to 3C/4C
- 3. Put in Excel Spreadsheet
- 4. Choose Color for first Match
- 5. Open Shared Match List
- 6. Color other Matches same color
- 7. Go to next uncolored name & choose new color
- 8. Open Shared Match List and color other Matches
- 9. Repeat until list is done
- 10. Identify Columns by Grandparent

	1	2	3	4
Robert				
Jenna				
Andre				
John				
Paul				
Anne				
Barbara				
Richard				
Jonas				
Sam				
Melissa				
Laura				
Thomas				
Florence				
Charlie				
1 = PGF				
2 = MGM				
3 = MGF				
4 = PGM				

DNAGedcom

- DNAGedcom by Rob Warthen (\$5/mo fee; \$50/yr Silver, \$100/yr Gold incl Client)
- Tool is on Client application (DGC)
- Log onto your DNA company, and download
 Match and ICW files
- Use Collins Leeds Method to run cluster report

DNAGedcom

Genetic Affairs

- Developed by Evert-Jon Blom
- Retrieval of new genetic Matches from 23andMe and FTDNA
- The AutoCluster tool will cluster close/large Matches
- First 200 credits are free
 - Monthly Subscription rates (includes 10% bonus)
 - Additional credits ~1 cent/credit
 - Credits charged from 25 to 100 for product

Genetic Affairs Tools

Genetic Affairs

Threshold 50-1200 cMs

87 matches

MyHeritage AutoClusters

- Offers AutoClusters feature in DNA Tools
- Transfer DNA & unlock tools (\$29) or Subscription

MyHeritage AutoClusters

Genetic Affairs cluster with MyHeritage matches

GEDmatch Auto-Clustering

- Offers a Clustering under Tier 1 (\$10/mo fee)
- Any Min/Max choice

Shared Clustering

- Created by Jonathan Brecher
- Installs program on your computer
- Download Match and ICW files at
 - **DNAGedcom Client**
- "Heat Map" not colors
- Open Source Tool
- Free

Clustering Step 1

Gather your Match List

- Match Lists exist at Test Companies & GEDmatch
 - DNAGedcom facilitates download
 - Some Cluster tools request Direct Access
- Upload List info as instructed
- Ancestry prohibition
 - Issued "Cease and Desist" order preventing use
 - Cluster tools no longer download matches from Ancestry

Clustering Step 2

Set Parameters and Run Tool

- Cluster tools have various Defaults
 - Genetic Affairs: 50 250 cM
 - GEDmatch: 15 50 cM
 - DNAGedcom: 50 400 cM
 - Shared Clustering: 20 Max from List
 - MyHeritage: Selected by MH

Some Sites allow adjustments

- Minimum & Maximum Thresholds
- Minimum Size of Largest segment
- Minimum Cluster Size

Adjustable Settings

- Experiment with Settings
 - Dana Leeds suggests start at 400 and 90 cM
 - Jim Bartlett suggests start at 200 to 80 cM
- Reducing the lower threshold increases # of matches and probably produces more clusters
- Reducing the range between min & max threshold will reduce # if clusters
- Higher threshold will include close relatives

Clustering Tips

- Jim Bartlett's recommendations include:
 - Use a large threshold (80cM to 200cM) first to get the hang of it. This will only include your closest cousins.
 - If offered, use an upper threshold of 1000cM or so, to cull out parents, siblings, children, aunt/uncle – they only appear in one Cluster anyway, and don't really add any value in most cases.
 - Reducing the threshold will increase the number of Clusters, and those Clusters will tend to form on more distant Ancestors.

Effects of Settings

Default 250 max - 50 min 41 Matches, 17 Clusters

1800 max - 40 min 323 Matches, 55 Clusters

1800 max - 50 min 87 Matches, 14 Clusters

3800 max - 60 min 41 Matches, 2 Clusters

Clustering Step 3

Review Clusters

- Look for Patterns, Names, Known Matches
- Use supplemental material like Spreadsheet
- Rerun if too many or too few

Supplemental Materials

Spreadsheet
Autocluster Cluster Information
Chromosome Segments
Chromosome segment statistics

Supplemental Info

	Chromosome	segment statisti	cs per Auto	Cluster clus	ster
Cluster	single_segments filter column	multiple_segments	x_segments	Paternal filter column	Maternal filter column.
▼ (3 items)					
Segments for cluster 1	0	90	0	0	0
Segments for cluster 2	0	74	0	0	0
Segments for cluster combined	0	97	0	0	0

						Aut	oClu	ster Clus	ster Information
							Down	load spreadsh	heet with clusters
	Name Search		l 🛎	ICW A	Cluster A	Tree 🗻	X	Predicted Search	m Y Not Notes Sı Searci Search
▶ Cli	uster 1 (18 items)								
▼ Cli	uster 10 (4 items)								
0		45	13	11	10	tree	0	4th Cousin	
0		45	13	9	10	tree	0	4th Cousin	
0		42	12	6	10	tree	0	(£	R-M269
0		41	13	5	10	tree	0	4th Cousin	
▼ Cli	uster 11 (8 items)								
0		72	10	9	11	24	0	Œ	

Spreadsheet Data

 Look at data for surnames, DNA segment data (start, stop, length), family trees, e-mail

1	Full Na	Match Date	Relationship Range	Suggested Relation	Shared	Longest	Known	E-mail	Ancest	YDNA I	mtDNA	ResultII Notes
20	Jc	a 2014-09-11	1st Cousin - 3rd Cousin	2nd Cousin	327.0	35.0	11	a	it			3003895
21	W	. 2011-02-16	2nd Cousin - 3rd Cousin	2nd Cousin	232.0	50.0	12	b	n	E-BY5856		97507
22	E(2016-01-17	2nd Cousin - 3rd Cousin	2nd Cousin	176.0	58.0	12	Si	@	E-M35		97506
23	В	I 2014-07-11	2nd Cousin - 4th Cousin	3rd Cousin	108.0	28.0	13	a	it			3008999
24	G i	r 2017-09-16	2nd Cousin - 4th Cousin	3rd Cousin	100.0	50.0	13	a	it	R-M269		3261115
25	G	2016-08-25	2nd Cousin - 4th Cousin	3rd Cousin	86.0	19.0	13	a	it	R-M269	Н	3023863
26	G	€ 2018-08-07	3rd Cousin - 5th Cousin	4th Cousin	84.0	15.0	14	g	Dį	G-M201		4550351
27	Α	t 2016-11-29	2nd Cousin - 4th Cousin	3rd Cousin	76.0	24.0	13	a	h			3559799
28	Н	g 2020-09-24	4th Cousin - Remote Cous	i-	76.0	12.0	15	h	19			5663871
29	C.	2019-08-15	5th Cousin - Remote Cous	i -	76.0	9.0	16	Ci	n			4860970
30	R	/i 2019-03-17	3rd Cousin - 5th Cousin	4th Cousin	73.0	15.0	14	rc	@ Henderso	R-M269		4752470
	90 - 516	all_your_dna	_matches AutoClusters-	11 clustering_dna_r	natches	+	1 4					

1	Identifier	Name	total share	matche	cluster	notes	tree	Rol Ro	ol Joh V	Vi Edv	Gu G	i F Lyı	Wal	le JT	Jac	Jim (Chı Da	aı Elir	He	Viv Jim Jo
11	3065588	Н	ir 53	none	3															
12	4761074	J.	C 51	none	3															
13	4771684	Ji	16 72	none	4															
14	5657267	Ji	r 62	none	4		tree													
15	4748519	C	1: 52	none	4															
16	3558197	С	p 51	none	.5															
17	2993336	E	u 50	none	5		tree													
18	3242120	H	a 53	none	6															
19	5344752	ν	·€ 50	none	6															
20	3226729	Ji	a 63	none	7		tree													
21	823653	J	n 51	none	7		tree													
21	023003	all_your	_dna_matches	1000	sters-11	cluste	ring_dna_r	matches	•		1 1									

Clustering Step 4

- Find the Cluster Common Ancestor
 - Apply Traditional Research
 - Correlate Family Trees of Cluster Members

- "Walking the Clusters Back"
 - Identify each grandparent cluster
 - Proceed to earlier ancestors
 - https://segmentology.org/2019/12/01/walking-the-clusters-back/

Clustering Step 5

Identify the DNA Segment

- Use Spreadsheet to examine segment data
- Utilize other tools
 - Autosegment at Genetic Affairs
 - Multi-Kit Analysis at GEDmatch
 - Surname & Ancestor Search at DNAGedcom
 - Chromosome Browser/Triangulation at MyHeritage

Identify Segment (a)

T830889 UG6572070

A714449 T266589

XR6539919 Ka MX1574503 *D NZ2339086 Hi

TW2115597 Ke

25.1 🗍 🕡

28.6

28.8

- Select the "Submit for Multi-Kit Analysis" box
- Analyze with Segment Search or Triangulation

Identify Segment (b)

Identify Segment (c)

Web site and contents @Copyright 2011-2020 by GEDmatch, Inc.

- Select Triangulation tool to identify and visualize triangulated segments
- Also use Chromosome Browser for another perspective of shared DNA

Match ID	Name	1	/latching segmen	ts on Chromoso	ome 13		Overlap with pr	evious match		
1	*RobGH(T005406)		27552701 - 115	5090193 (114.4	cM)					
2	*WTH(T830889)	29610405 - 63	3542512 (36.4 cM	1), 64555757 - 9	98755398 (33.9 cM	2961040	5 - 63542512,6	64555757 - 987	55398	
hr 13									-1/-	
	_									
2										5170701000

Segment to Ancestor

DNA Painter

- Cluster Auto Painter
 - Generate chromosome map from Clusters
 - Identify Clusters as Maternal or Paternal

Superclusters

- Superclusters are clusters related to each other
- Indicated by the gray boxes (matches who fit into other clusters)
- Coined by DNAGedcom developers

Caveats & Variables

- Clusters are NOT Perfect
- Matches do not always match each other
- Common Ancestor may vary by generation
- No guarantee shared segment is IBD
- Cluster tool & Match Lists
 - Parameter Settings
 - Algorithms
 - Match Lists Differ
 - Dissimilar Databases
 - Company Threshold

Points to Remember

- The Gray Ungrouped Boxes represent how people match others outside the cluster
- Experiment with additional Parameter settings besides the Default settings
- Identify Grandparent groups and move on to earlier generations: "Walk the Clusters Back"
- Clusters are represented by colors. Each cluster can "possibly" show relationship represented by a Common Ancestor
- The Two Goals are to create Genetic Networks and Identify the Common Ancestor and Segment

References

- Help at Cluster Tool
 - Genetic Affairs:
 https://www.geneticaffairs.com/images/Manual Genetic Affairs.pdf
 - Shared Clustering:
 https://github.com/jonathanbrecher/sharedclustering/wiki
- Dana Leeds: www.danaleeds.com/the-leeds-method/
- Jim Bartlett: https://segmentology.org/
- Family Locket: https://familylocket.com/10-ways-to-group-your-dna-matches-into-genetic-networks
- Kitty Cooper's Blog: <u>https://blog.kittycooper.com/2019/05/more-clustering-tools/</u>
- DNAeXplained (Roberta Estes): https://dna-explained.com/